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Abstract —This paper presents the design, fabrication, and
evaluation of a fully integrated W-band monolithic down-
converter based on InGaAs pseadomorphic (PM) HEMT tech-
nology. The monolithic downconverter consists of a two-stage
low-noise amplifier and a single-balanced mixer. The single-bal-
anced mixer has been designed using the HEMT gate Schottky
diodes inherent to the process. Measured results of the complete
downconverter show a conversion gain of 5.5 dB and a double-
sideband (DSB) noise figure of 6.7 dB at 94 GHz. Also presented
in this paper is the downconverter performance characterized
over the —35°C to +65°C temperature range. The downcon-
verter design was a first pass success and has a high circuit
yield. Furthermore, this is the first reported monolithic down-
converter in the W-band frequency range, and represents the
state-of-the-art in monolithic millimeter-wave technology.

I. INTRODUCTION

HE W-band downconverter is a key component for

smart munitions, millimeter-wave imaging, and ra-
diometer applications. Both hybrid and monolithic W-
band low-noise amplifiers (I.NA’s) and mixers have been
reported recently [1]-[11]. The performance of these am-
plifiers and mixers are summarized in Table I and Table
11, respectively. Although all these circuits have shown
encouraging performance at W-band, no attempt has been
made to integrate the amplifier and mixer in a single
downconverting chip. This is because the W-band mono-
lithic diode mixers [8], [9] were mostly developed for
MESFET technology; therefore not compatible with the
W-band LNA which requires HEMT devices. On the
other hand, the HEMT active mixers [10], [11] are capable
of integration with the HEMT LNA, but its realization is
less reliable due to insufficient device model data. The
intention of this work is to explore the feasibility of high
level integration of a W-band LNA and a single-balanced
diode mixer in a single chip using the monolithic PM
HEMT technology.

A fully integrated PM HEMT downconverter MMIC,
which consists of a two-stage low-noise amplifier and a
single-balanced diode mixer, has been successfully de-
signed, fabricated and tested. The downconverter is de-
signed to receive 90 to 98 GHz RF signals and downcon-
verts to 0.1 to 8 GHz IF output. At 94 GHz, the two-stage
LNA shows 5.2 dB noise figure and 11.3 dB associated
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gain; the single-balanced mixer has 7.6 dB conversion loss
with a 10 dBm local oscillator input power at 93 GHz.
The complete downconverter with a 95 GHz LO and a
1 GHz IF exhibits 5.5 dB conversion gain and 6.7 dB DSB
noise figure. At 93 GHz LO, the downconverter has 6.0
dB DSB noise figure and 7.3 dB conversion gain. This
design was a first pass success and is the first reported
monolithic downconverter in the W-band frequency range.

The downconverter configuration is discussed in Sec-
tion II. The MMIC circuit design and fabrication are
presented in Sections III and IV, respectively. Section V
summarizes the circuit performance and is followed by a
conclusion.

II. DOWNCONVERTER SYSTEM CONFIGURATIONS

Fig. 1 illustrates a simplified block diagram of a typical
downconverter. It consists of an RF amplifier, a fre-
quency downconverting mixer, an IF amplifier, and the
LO source and LO buffer amplifier. At microwave and
lower frequencies the whole downconverter can be real-
ized in a single chip [12], because at these frequencies all
the downconverter components are readily designed with
high yield using same device technology (0.25 um MES-
FET’s or AlGaAs HEMT’s). However, as the frequency
increases from the microwave to the low millimeter-wave
range, the LO source and buffer amplifier are more likely
to be separate [13], [14], since they are difficult to realize
using the same device technology as the other compo-
nents. Partition of a millimeter-wave downconverter into
different chips at the millimeter-wave frequencies seems
inevitable at the present time, because the individual
circuits of the whole system are still dominated by the
available device technology. In designing the W-band
monolithic downconverter, we have examined three dif-
ferent partition configurations that are shown in Fig. 2
(a)-(c). In all three configurations the LO chip is consid-
ered as an external source which needs to be developed in
the future. The potential advantages and disadvantages of
each configuration are summarized in Table III. The
major disadvantages of configuration 1 and 2 are related
to the circuit yield and process complexity. For example,
in configuration 1 the IF amplifier does not require a 0.1
pm T-gate device technology which is an essential for the
RF low-noise amplifier. Due to the lower expected vyield
of 0.1 pum devices, it may not be cost-effective in a
production environment. In configuration 2, if MESFET’s
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TABLE I
PERFORMANCE SUMMARY OF THE W-Banp LNA’s
Gain/NF
- No. of (dB) @
Device Technology Devices 94 GHz LNA Design Features
GaAs-based PM HEMT 1 5.0/NA MMIC one-stage [1]
GaAs-based PM EMT 1 5.0/NA MMIC one-stage [2]
InP-based HEMT 2 8.0/NA MMIC cascode configuration [3]
InP-based HEMT 5 6.0/NA MMIC distributed amplifier [4]
InP-based HEMT 7 6.0/NA MMIC distributed amplifier [5]
GaAs-based PM HEMT 2 9.7/4.2 Hybrid [6]
InP-based HEMT 2 11.5/3.3 Hybrid [6]
GaAs-based PM HEMT 2 11.3/5.2 MMIC two-stage, present work
TABLE 11
PERFORMANCE SUMMARY OF THE W-BAND MIXERS
Conversion
Device Technology Mixer Circuit Gain (dB) Mixer Design Features
GaAs MESFET SB* diode -175 MOCVD, monolithic [8]
GaAs MESFET SB* diode -10 Ton implanted, monolithic [9]
AlGaAs HEMT SE** active HEMT -6.0 MBE, hybrid [10] *
InP-based HEMT SE** active HEMT 2.0 MBE, hybrid [11]
PM InGaAs HEMT SB* diode -75 Monolithic, present work

*SB-Single-balanced
xx SE-Single-ended

Fig. 1. Simplified block diagram of a downconverter.

or AlGaAs HEMT’s were used for the mixer and IF
amplifier circuits then a special device process is required
for an acceptable mixer design whether it is a passive or
active mixer circuit. Moreover, an external RF intercon-
nection between the LNA chip and downconverter chip
may degrade the overall system performance. Since all
these problems can be effectively eliminated in configura-
tion 3, we have chosen this configuration with a passive
diode mixer in our design.

III. Circurr DESIGN
Low-Noise Amplifier

The two-stage LNA design is similar to that reported in
[7] except the matching circuit is slightly different. Fig.
3(a) and (b) are circuit schematic and photograph of the
amplifier chip, respectively. The chip size is 1.2X2.2
mm?. The 0.1 um T-gate, four-finger 40 um device was
used in each stage, and the total dc power consumption of
the amplifier is about 80 mW.

Fig. 2. Three configurations of a monolithic downconverter. (a) DC
chip and LO chip. (b) LNA chip, DC chip, and LO chip. (¢) DC chip, IF
chip, and LO chip.
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: TABLE 111
TraDE-OFF OF THE THREE DOWNCONVERTER CONFIGURATIONS
System .
Configuration Advantages Disadvantages
1. Fig. 2(a) Simple, compact IF amplifiers use same device
technology with RF amplifiers
(0.1 wm T-gate); circuit yield
may be a concern
2. Fig. 2(b) Currently existing for MESFET RF connection between chips is
(DC chip) and HEMT required; special diode
technologies (LNA chip) process for mixer is required
3. Fig. 2(c) 1. True monolithic
downconverter
2. Currently existing for Requires more chips than
MESFET (IF chip) and configuration 1
HEMT technologies
(DC chip)
3. Active mixer can be used to
reduce LO power
Ve The top view of the planar Schottky diode is depicted
in Fig. 4(a); it is constructed by connecting the source and
a0 - drain metallizations of a HEMT device as the cathode of
X10 um . . .
o the diode. The gate pad is used as the anode. The key
OUTPUT advantages of using the PM HEMT gate Schottky junc-
vd tion as a diode are the process compatibility with the
(a) HEMT device and its good millimeter-wave performance
in the mixer circuit. Typical dc I-V characteristics of a
two-finger 16 um diode is shown in Fig. 4(b). The series
resistance Rs, reverse leakage current Is, and ideality
factor n of the diode are calculated from this I-V curve.
In addition, the S-parameters of the same diode at differ-
ent bias conditions are also used to model the diode
junction capacitor Cj and device parasitics. A diode non-
® linear model based on both the dc -V and S-parameter
Fig. 3. (a) Circuit schematic of the two-stage LNA. (b) Photograph of measurement data is shown in Fig. 4(c). The cutoff fre-

the two-stage LNA. .

Single-Balanced Mixer

Although the spurious and linearity requirements for a
mixer at W-band is not as critical as those for the mi-
crowave applications, in which the spectrum is already
fully occupied with crowded signals, the W-band mixer
ultimately will be a balanced configuration. Furthermore,
it is advantageous in a transceiver to have a common
mixer circuit that can be utilized both for frequency
upconverting and downconverting functions. The diode
mixer is a mature technology at millimeter-wave frequen-
cies, and is relatively easier to design as compared with
the HEMT active mixer, although the latter may operate
with a lower LO drive for a similar conversion loss perfor-
mance [10]. A passive mixer can be used for both upcon-
verting and downconverting applications with the same
circuit, and hence simplify future high level monolithic
integration requirements. From these considerations, a
single-balanced diode mixer configuration was chosen for
the design of the W-band monolithic mixer. The design
procedure for the diode mixer is described in [15].

quency of a 16 um diode is estimated to be 550 GHz
using the calculated Rs and Cj of the model at zero bias.

Fig. 5(a) and (b) are circuit schematic and photograph
of the mixer chip, respectively. The chip size is 1.2X2.0
mm?. The mixer includes a 180° rat-race hybrid for the
RF and LO signal inputs and a matched pair of 16 um
InGaAs HEMT gate Schottky diodes for the mixing ele-
ments. The use of MIM capacitors and complex circuit
structures have been eliminated for a better circuit yield.
Because of the small size of the rat-race ring, the diodes
are positioned outside the ring and the IF signal is tapped
out from the ring circumference. A low pass filter con-
structed with series high impedance line and shunt radial
stubs provides a short for RF and LO frequencies at the
output port. The diode matching circuits are realized with
high impedance microstrip. lines and shunt open stubs.
Edge-coupled microstrip lines are used for blocking ca-
pacitors at the RF and LO ports.. No dc bias is included
for the current mixer circuit although a dc bias may be
added to reduce the required LLO power for the same
conversion loss. All the passive elements were character-
ized with a full wave EM analysis [16] during the design
phase.
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Fig. 4. (a) Top view of the HEMT gate diode. (b) DC -V curve of a
16 wm diode. (¢) Nonlinear model of a 16 um diode.

Monolithic Downconuverter

The block diagram of the W-band downconverter is
shown in Fig. 2(c). It consists of a two-stage LNA and the
single-balanced diode mixer described in the previous
section. A photograph of the complete downconverter
chip is shown in Fig. 6. The chip size is 1.2X4.2 mm?.
Since the LNA and mixer are both designed for a 50 Q

impedance system, the complete downconverter is real-

ized by simply connecting the two-stage LNA and mixer
with a dc blocking edge-coupled line. All the circuits are
realized on a 100 wm thick GaAs substrate. In addition to
the downconverter chip, each individual subcircuit was
included on the same wafer for evaluation and diagnosis.

1975

(b) .
Fig. 5. (a) Circuit schematic of the single-balanced diode mixer.
(b) Photograph of the single-balanced diode mixer.

IV. Circult FABRICATION

Both MMIC mixer and downconverter were fabricated
on an InGaAs/GaAs heterostructure HEMT wafer. The
planar-doped PM HEMT wafer was grown by MBE with
a channel InGa mole fraction of 22%. The device cross-
section is shown in Fig. 7. Hall mobility measurements
performed on calibration wafers indicate a room tempera-
ture 2-DEG concentration of 2.55% 10" c¢m™2 with a
mobility of 6250 cm? /V s, and 77 K 2-DEG concentration
of 2.44%x 102 cm~? with a mobility of 17000 cm?/V s.

The MMIC process 'is similar to that previously re-
ported [17], [18]; it starts with multiple oxygeén implanta- -
tion to obtain device isolation (R >107 ). Ohmic con-
tracts are deposited using Ni/AuGe/Ag/Au evaporation
and lift-off process, and alloyed using rapid thermal an-
neal at 540°C. The 0.1 um T-gate consisting of Ti/Pt/Au
was defined using a Philips EBPG-3 electron-beam lithog-
raphy system with a two-layer PMMA /P(MMA-MMA)
resist ‘system. Discrete device yields are typically greater
than 80% using this T-gate process. A thin layer of metal
(Ti-Au) is deposited and lifted-off to form the low resis-
tance first level metal interconnects. The airbridge and
transmission lines consist of 2 um of Ti/Au. Via holes
with a diameter of 40 um were etched through the
100 wm GaAs substrate using RIE to provide low source
grounding inductance.
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Fig. 6. Photograph of the W-band downconverter.
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Fig. 7. Cross section of the InGaAs PM HEMT.

V. Circurt PERFORMANCE

The amplifier\, mixer, and downconverter hdve been
tested in waveguide test fixtures. Finline transitions are
used to couple the W-band signals from waveguide to
microstrip. The insertion loss of transitions (back to back)
ranges from 1.7 to 2.0 dB in the frequency range of 88 to
96 GHz. All the measurement data described hereafter
have been corrected for the RF and LO transition losses.

Low-Noise Amplifier

The two-stage low-noise amplifier has a 11.3 dB mea-
sured small signal gain at 94 GHz and 17 dB at 89 GHz.
Input return loss is better than 10 dB from 91 to 97 GHz
and output return loss is better than 5.0 dB across the
same bandwidth. Noise figure is 5.2 dB from 91 to
95 GHz as shown in Fig. 8. The noise figure and gain of
this amplifier are 0.3 dB and 2.0 dB, respectively, lower
than that of the two-stage amplifier reported in [7].

Gain and Noise Figure, dB

—%— QGain, dB

¢ Noise Figure, dB

0 T T T
92 93 94 95 96

Frequency, GHz

Fig. 8. Measured small signal gain and noise figure of the two-stage

LNA.
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Fig. 9. (a) Measured and simulated conversion loss of the single-bal-
anced mixer as a function of the LO power. The RF and LO frequencies
are 94 GHz and 93 GHz, respectively. (b) Measured and simulated
conversion loss of the single-balanced mixer as a function of the RF
frequency. The IF frequency is fixed at 1 GHz. (c) Measured conversion
loss of the single-balanced mixer as a function of the IF frequency.



CHANG et al: W-BAND MONOLITHIC DOWNCONVERTER

10

1977

TABLE 1V
MEeasURED CONVERSION GAIN AND NoOISE FIGURE OF THE W-BAND
DOWNCONVERTER
Temp. °C) IF(GHz) NF(dB)  Conversion Gain (dB)

0.3 4.9 8.6

-35 0.4 4.8 8.7

0.5 4.7 8.8

0.3 6.0 7.1

23 0.4 6.0 6.9

0.5 6.0 7.0

0.3 6.7 5.8

65 0.4 6.6 5.8

0.5 6.6 57
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Fig. 10. (a) Measured noise figure and associated conversion gain of
the W-band downconverter. The IF is fized at 1 GHz. (b) Measured
conversion gain of the W-band downconverter as a function of the RF
frequency. (c) Measured compression characteristic of the W-band
downconverter.

Single-Balanced Diode Mixer

The mixer downconverts a 90-98 GHz RF signal to
0.1-8 GHz IF frequency range. Fig. 9(a) illustrates the
measured and simulated mixer conversion loss as a func-
tion of the LO power. The RF and LO frequencies are
fixed at 94 and 93 GHz, respectively. Conversion loss
improved by 2.4 dB as the LO power was increased from
5 dBm to 10 dBm, and remained almost unchanged even
with more LO power. The following measurements were

taken at this LO power level. Typical conversion loss at
IF=1 GHz is 7.5~85 dB with an input power of
—10 dBm and a LO drive of 10 dBm. Fig. 9(b) shows the
measured and simulated mixer conversion loss between
90 to 98 GHz. The agreement between the measured and
simulated results is within 2.5 dB. The RF to LO isolation
is between 16 and 27 dB within the same frequency range.
Fig. 9(c) is the measured mixer conversion loss for IF
frequency ranging from 1 to 8 GHz, the LO frequency is
fixed at 89 GHz. The conversion loss is less than 10 dB
for IF frequencies below 6 GHz. For most of RF frequen-
cies, minimum conversion loss can be achieved with the
LO frequency around 93-94 GHz.

Monolithic Downconverter

Fig. 10(a) shows the measured downconverter gain from
90 to 98 GHz with the IF fixed at 1 GHz and LO power
of 10 dBm. The gate and drain of the LNA are biased at
zero and three volts, respectively. The drain current is
about 13 mA per HEMT. Also included in the figure is
the noise figure of the downconverter below 94 GHz. The
complete downconverter with a 95 GHz LO and a 1 GHz
IF exhibits 5.5 dB conversion gain and 6.7 dB DSB noise
figure. At 93 GHz LO, the downconverter has 6.0 dB
DSB noise figure and 7.3 dB conversion gain. The down-
converter conversion gain as a function of the RF fre-
quency is shown in Fig. 10(b). The LO frequency is fixed
at 93 GHz in this case.

The measured compression characteristic of the down-
converter is plotted in Fig. 10(c). The RF and LO fre-
quencies are fixed at 94 and 93 GHz, respectively. The
calculated output 1 dB compression point is about
— 6 dBm. Finally, the conversion gain and noise figure of
the downconverter at 94 GHz RF frequency and 0.3 to
0.5 GHz IF frequencies over the —35°C to +65°C tem-
perature range are shown in Table IV. In general, the
gain and noise frequency response tracks over the whole
temperature cycle. The gain variations may be compen-
sated by a specially designed bias network.

V1. CoNCLUSION

A ‘W-band monolithic downconverter based on In-
GaAs/GaAs HEMT devices technology has been de-
signed, fabricated and tested. This downconverter inte-
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grates a two-stage LNA and a single-balanced diode mixer
into a single chip. Measured results of the complete
downconverter show a conversion gain of 5.5 dB and a
DSB noise figure of 6.7 dB at 94 GHz. The downcon-
verter is a first pass design and has a high circuit yield.
This is the first successfully developed single chip MMIC
downconverter in the W-band frequency range.
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